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SUMMARY:  
This study investigates the nonlinear aerodynamic properties and actual energy feedback mechanism of limit cycle 
oscillation (LCO) and subcritical Hopf bifurcation of a truss girder. The response characteristics of the girder were 
experimentally investigated through section model wind tunnel tests. A modified nonlinear self-excited force model 
was proposed to investigate the intrinsic time-varying characteristics of the aerodynamic properties and the real 
energy feedback mechanism of the subcritical Hopf bifurcation. Based on the model, the characteristics of nonlinear 
self-excited forces and their contribution to the energy exchange behaviors, were studied. Subsequently, the energy 
feedback mechanisms of LCO and subcritical Hopf bifurcation were qualitatively discussed in detail considering the 
hysteresis loop of nonlinear self-excited forces, which highlighted the important role of the linear self-excited-
moment in the generation of a subcritical Hopf bifurcation. Finally, the evaluation of the existence of subcritical 
Hopf bifurcation was intuitively reflected in the aerodynamic parameters of the nonlinear self-excited force model, 
which can help attain better bridge deck tailoring to achieve a better aerodynamic configuration. 
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1. INTRODUCTION 
The flutter instability of bridges is a self-excited aerodynamic instability. It has attracted 
considerable attention over the past several decades. According to certain well-developed linear 
methodologies, the critical wind speed, as well as the dynamic mechanism of flutter can be 
accurately predicted and interpreted (e.g., Chen et al. 2000; Miyata, 2003;). However, these 
methodologies often assume linearized self-excited forces in terms of linear flutter derivatives. 
Consequently, these methodologies are only applicable to the calculation of linear flutter. 
 
However, experiences revealed that aerodynamic nonlinearity becomes gradually prominent in 
wind-induced motions. Instead of a linear flutter, a nonlinear one with Hopf bifurcation was 
generally observed (e.g., Amandolese et al., 2013; Wu et al., 2020; Gao et al., 2020). The Hopf 
bifurcation be classified into two groups by judging the stability of the LCO, that is, the 
supercritical one when all LCOs are stable and the subcritical one when unstable LCOs exists. 
Great efforts have been paid to developing analysis frameworks for investigating the 



supercritical Hopf bifurcation of bridge decks. However, less attentions are paid to the 
calculation and driving mechanism of the subcritical Hopf bifurcation of bridges. 
In this study, the subcritical Hopf bifurcation of a truss girder was examined through a wind 
tunnel test. The characteristics of torsional flutter and vertical motion on the evolution of 
unstable LCO are analyzed. An empirical nonlinear self-excited force model was proposed. The 
hysteresis loops of nonlinear self-excited forces are generated by which the aerodynamic 
mechanism of LCO and subcritical Hopf bifurcation can be well explained.  
 
 
2. SUBCRITICAL HOPF BIFURCATION OF A TRUSS GIRDER 
A truss girder, as shown in Figure 1, is adopted. The section model was modeled with a scale 
ratio of 1:80. Which has a length of 1.1m, a width of 0.35m and a height of 0.125m. Two 
degrees-of-freedom system (2DOFs) was built to allow vibration in both the vertical and 
torsional directions. Besides, an SDOF system was also built to simulate torsional vibration only. 
The flow condition was smooth flow. Further, the wind angle of attack (AOA) was set at 0o. The 
mass and mass moment of inertia per unit length of both systems were 6.36 kg/m and 0.123 
kg·m2/m, respectively. The natural frequencies in the torsional and vertical directions, were 
fα=3.37Hz and fh=2.76Hz, respectively. Detailed information regarding the experimental setup 
can be found in Wu et al. (2020). 

 
 

Figure 1. Cross-section of the truss girder (Unit: mm). 
 
Figure 2 shows the torsional amplitudes of the SDOF and 2DOFs systems. It is observed that the 
amplitude variation with wind speed was characterized as a typical subcritical Hopf bifurcation, 
For example, for the SDOF torsional system, attributed to the modal modification effects (i.e., 
modal properties varying with wind speed) induced by nonlinear self-excited forces, the system 
performs a subcritical Hopf bifurcation within the wind speed region of [5.0, 5.7]m/s, wherein 
the unstable LCO decreases with wind speed increasing while the stable LCO increases with 
wind speed increases. The unstable LCO branch vanishes when wind speed is beyond this region. 
 
 
3. NONLINEAR SELF EXCITED FORCE MODEL 
The SDOF system is used as an example for the investigation. The nonlinear self-excited force 
model is built as  
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where 𝜌𝜌 is the air density; 𝑈𝑈 is the wind speed; 𝑏𝑏 = 𝐵𝐵 2⁄  is the half-width of the bridge girder; 
𝛼𝛼 and �̇�𝛼 are, respectively, the torsional displacement and speed;𝐴𝐴2(𝑘𝑘), 𝐴𝐴3(𝑘𝑘)and 𝜀𝜀𝑖𝑖0(𝑘𝑘) are 



the dimensionless aerodynamic parameter of the model; 𝑚𝑚 is the order of the model. 
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(a) Subcritical Hopf bifurcation of the SDOF system (b) Subcritical Hopf bifurcation of the 2DOFs system 
Figure 2. Cross-section of the truss girder (Unit: mm). 

 
4. AERODYNAMIC MECHANISM INTERPRETATION 
Figure 3 presents the hysteresis loops for 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠  at a wind speed of 5.72m/s. An energy dissipation 
zone around the equilibrium position, an energy pumping zone at the intermediate amplitude 
range, and an energy dissipation zone at a large amplitude range can be found. Apparently, 
ignoring the small dissipation zone around the equilibrium position which can be easily 
conquered via certain external excitations, the fluid continuously pumps energy into the system. 
The amplitude will increase when the pumped energy exceeds the dissipative one induced by 
structural damping. However, the fluid will act as an aerodynamic damper when the amplitude is 
beyond the pumping zone; the vibration will finally maintain a certain stable LCO wherein the 
dissipation contribution cancels out the pumping one. However, if the dissipation contribution 
around the equilibrium position cannot be easily conquered by external excitations, it is 
convincing that the system will always remain in the still state unless a sufficiently large initial 
amplitude is applied by which the system can spontaneously increase to another stable LCO. 
Consequently, two final states exist for the system at one wind speed. Thus, a subcritical Hopf 
bifurcation emerges in a dynamic system. 

 
 

Figure 3. Hysteresis loops of 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠  at a wind speed of 5.72m/s. 
 
Figure 4(a) presents the hysteresis loops for 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 at different wind speeds. The dissipation zone 
around the equilibrium position gradually decreases with increasing wind speed. At a wind speed 
of 6.47m/s, the dissipation zone vanishes, implying that 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 always pumps energy to the 
dynamic system even if the initial amplitude is slight. Thus, the subcritical Hopf bifurcation only 
emerges at a relatively low wind speed range, as shown in Figure 2. Figure 4(b) shows the 
hysteresis loops of the linear component of 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠. One can find that 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,1 dissipates energy in 
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the entire amplitude range when wind speed is less than 6.47m/s. However, at a wind speed of 
6.47m/s, the hysteresis loop is clockwise evolved, implying that 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,1 pumps energy to the 
bridge system. The evolution pattern of energy exchange behavior of 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠,1 well explains the 
change of dissipation zone in the hysteresis loop of 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 varying with wind speed and reveals 
that the linear component of the nonlinear self-excited-moment plays the most important role in 
the determination of the unstable LCO and subcritical Hopf bifurcation. 

  
 

(a) Hysteresis loops of 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠  (b) Hysteresis loops of linear component of 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠  
Figure 4. Hysteresis loops of self-excited force. 

 
5. CONCLUSIONS 
This study presented a study on the mechanism of the subcritical Hopf bifurcation of a truss 
girder. A modified nonlinear self-excited force model was proposed. According to the model, the 
contribution of nonlinear self-excited forces to the generation of the LCO and the subcritical 
Hopf bifurcation was quantified. Besides, the real energy feedback mechanism of LCO and the 
subcritical Hopf bifurcation were investigated through a qualitative explanation in terms of the 
hysteresis loop of nonlinear self-excited forces. 
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